## Problem 1: An Impossible Electric Field

One of these vector fields cannot possibly be an electric field. Which one?
(a) $\vec{E}=\alpha y z \hat{x}+\alpha(z x-4 z y) \hat{y}+\alpha\left(x y-2 y^{2}\right) \hat{z}$.
(b) $\vec{E}=-3 \alpha x z \hat{x}+\alpha x y \hat{y}+2 \alpha y z \hat{z}$

Here $\alpha$ is a constant with appropriate units. For the $\vec{E}$ which could be an electric field, find the potential at a point with coordinates $(x, y, z)$. Use the origin as the reference point and find $V$ by integrating $d \vec{\ell} \cdot \vec{E}$ along any path that starts at the origin and ends at the point $(x, y, z)$. Check that $-\vec{\nabla} V$ for your answer gives the correct $\vec{E}$.

Hint: You can use any path between the origin and $(x, y, z)$ to find $V$ - they will all give the same result - but to perform the integral you must choose some path. Use one that makes the integral easy. For instance, you could integrate along the $x$-axis from $(0,0,0)$ to $(x, 0,0)$, then in the $y$-direction from $(x, 0,0)$ to $(x, y, 0)$, and so on. Or you could draw a straight line from the origin to the point and integrate along that: $\left(x^{\prime}, y^{\prime}, t^{\prime}\right)=(x t, y t, z t)$ with $0 \leq t \leq 1$. In that case, $d \vec{\ell}^{\prime}=x d t \hat{x}+y d t \hat{y}+z d t \hat{z}$, which you would dot into $\vec{E}(x t, y t, z t)$.

## Problem 2: Non-Uniform Surface Charge on a Disk

Find the electric potential at a point above the center of a disk of radius $R$ with a surface charge density that changes linearly from $\sigma_{\text {in }}$ at the center of the disk $\sigma_{\text {out }}$ at its outer edge:

$$
\sigma(s)=\sigma_{\text {in }}+\frac{s}{R}\left(\sigma_{\text {out }}-\sigma_{\text {in }}\right),
$$

where $\sigma_{\text {in }}$ and $\sigma_{\text {out }}$ are constants, and $s$ is the distance from the center of the disk. To make things easy, assume that the disk sits in the $x-y$ plane, with the origin at the center of the disk, and use cylindrical polar coordinates. You may not use a computer to perform the integral. Either evaluate it on your own or use an integral table. If you use an integral table, provide a reference at the end of your solution.


## Problem 3: Potential due to a Uniform Charged Cylinder

A solid cylinder of length $L$ and radius $R$ carries a uniform volume charge density $\rho_{0}$. Find the potential at a point on the axis of the cylinder, a distance $z$ from its center. Assume that $z>L / 2$ so the point is outside of the cylinder.


## *Problem 4: Potential due to a Solid Uniform Sphere

You already know that the electric potential outside a uniform charged solid sphere of radius $R$ and total charge $Q$ is the same as a point charge. Calculate the electric potential inside a uniformly charged solid sphere using the formula

$$
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \int_{\mathcal{V}} d \tau^{\prime} \frac{\rho_{0}}{\imath}
$$

where $\rho_{0}=Q /\left(\frac{4}{3} \pi R^{3}\right)$ is the constant charge density. You can check your answer by taking the $R_{i} \rightarrow 0$ limit of the electric potential for a spherical shell of inner radius $R_{i}$ and outer radius $R$, which we worked out in class. Finally, use the gradient of your answer to find the electric field inside the sphere.

Hint: The set-up here is just like the spherical shell example from class. Make sure your $z$-axis is in the direction of $\vec{r}$, so that $\vec{r}=r \hat{z}$. Set up the integrand the same way, and remember that, since $0 \leq r \leq R$, the integral over $r^{\prime}$ will involve regions where $0 \leq r^{\prime}<r$ and regions where $r<r^{\prime} \leq R$. In the former, $\sqrt{\left(r-r^{\prime}\right)^{2}}=r-r^{\prime}$. In the latter, it's $\sqrt{\left(r-r^{\prime}\right)^{2}}=r^{\prime}-r$.

## Problem 5: Gauss' Law for a Long, Hollow Cylinder

Use Gauss' law to find the electric field inside and outside a long, hollow, cylindrical tube of radius $R$ which carries a uniform surface charge density $\sigma$. Check that your result agrees with the expected discontinuity in the component of the electric field normal to the surface:

$$
\vec{E}_{\text {out }}(s=R)-\vec{E}_{\text {in }}(s=R)=\frac{\sigma}{\epsilon_{0}} \hat{n}
$$



